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Abstract
Recently, researchers have reported many models mimicking real network
evolution growth, among which some are based on network aggregation
growth. However, until now, relatively few experiments have been
reported. Accordingly, in this paper, photomicrographs of real materials
(the agglomeration in the filtrate of slurry formed by a GaP-nanoparticle
conglomerate dispersed in water) are analyzed within the framework of
complex network theory. By data mapping from photomicrographs we generate
undirected networks and as a definition of degree we adopt the number of
pixel’s nearest neighbors while adjacent pixels define a connection or an
edge. We study the topological structure of these networks including degree
distribution, clustering coefficient and average path length. In addition, we
discuss the self-similarity and synchronizability of the networks. We find that
the synchronizability of high-concentration agglomeration is better than that
of low-concentration agglomeration; we also find that agglomeration networks
possess good self-similar features.

PACS numbers: 05.10.−a, 05.45.Df, 82.35.Np, 89.75.−k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the pioneering work by Watts and Strogatz on small-world networks [1] and Barabási
and Albert on scale-free networks [2], complex networks have provided a natural framework
to describe a variety of large systems in many disciplines of science and have recently received
much attention from scientific communities [3–7]. In the past few years, large numbers of
models have been proposed aiming at reproducing statistical properties of real-world networks
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[8–17]. Meanwhile, another group of complex network studies aims to investigate certain
dynamical problems on network topologies [18–21]. A third group of works studies the
empirical evidence collected from real data [22–34]. In these works, a real system can be
described by a complex network with nodes (or vertices, or points) representing individuals,
organizations, computers, etc, and links among them representing their interactions. Although
a large number of empirical researches have been done, complex network theory has not been
applied in material sciences as far as we know and we hope to shed some new light on the
field by adopting network language.

On the other hand, in material science, the vibrational spectra can give more detailed
molecular structural information. Raman spectra have been shown to be well suited for the
vibrational investigation of compounds. To the best of our knowledge, most attention has
been given to the substrate and many theories have been introduced to explain the intensity
enhancement [35, 36]. However, no precise explanations about how complex material structure
affects Raman spectrum intensity have been reported. This problem leads us to consider the
relation between the topological structure of agglomeration and the aggregating processes in
the hope of giving a rational explanation of the relation. Furthermore, because the robustness
of a material has a close relation to endurance, conductance and other material properties, to
quantify the robustness of a network against intentional or random attack is a crucial subject
also for material researchers.

In this paper, we first report an experiment and directly use complex network theory
to convert real agglomerations into network models. With the intention of studying the
topological properties of the networks, degree distribution, clustering coefficient, correlation
between degree and clustering coefficient, average path length, and degree correlation are
obtained in this paper. In addition, self-similarity and synchronizability behavior are discussed.
Moreover, we discuss the corresponding meanings of these structural parameters from the
perspective of material researchers. In a word, this work establishes that the properties of
materials can to some extent be reflected by the mapped networks.

2. The experiment

200 mg GaP particles were placed in an Erlenmeyer flask filled with 50 ml deionized water. The
resulting slurry was dispersed by agitation for about 24 h and separated by filtration. (The filter
membrane was made of synthetic fabric ester; the aperture was 220 nm). A few fragments of
the membrane coupled with permeating particles had been gradually associating for four years
and turned to agglomerations. In the solution, the structures of these two agglomerations were
three-dimensional and mobile; but, for the sake of analysis, they had to be fixed and captured
in the form of two-dimensional images. Hence a small portion of the solution was removed
from the flask and placed on a glass slide. After evaporation of the water these glass slides
were placed under an optical microscope (VHX-100K digital metallography microscope). We
chose to study the most integrated agglomerations in low- and high-concentration solutions,
respectively. The optical microscope pictures (500 times magnified) are shown in figure 1.

In this paper, two slices of the surfaces of different agglomerations in high- and low-
concentration solutions are selected as objects for research. Then, in order to establish our
conclusion (regarding synchronizability in section 3.6) we chose to test two close arrayed points
(approximately the same number of particles as in the laser spot) in high- and low-concentration
agglomerations coupled with different topology structures. The Raman spectra were recorded
by a Horiba Jobin Yvon 800 UV Raman spectroscope. The sample was illuminated with the
514 nm line of an Ar laser in a backscattering geometry. To avoid thermal effects, in typical
experiments the laser beam power at the sample surface was 15 mW with a light spot diameter
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Figure 1. Optical microscope pictures of agglomerations in (a) the low-concentration solution and
(b) the high-concentration solution, respectively.

of about 2 µm. The spectra were measured in the Stokes spectral range between 1800 and
900 cm−1. The scattered photons were detected by a cooled photomultiplier with a spectral
resolution of 1 cm−1. It should be pointed out that the scattering intensities of the two different
samples were measured with the same apparatus and under identical conditions so that the
values of the intensity were comparable.

3. Structural properties

Data mapping from pictures is an interesting and important task in our work. A pixel of
uniform color and gray level is defined as a node; in the meantime the pixels around it take
the role of neighbors. Then two slices with the same color and gray level are acquired from the
pictures: see figure 2. In fact there are slight changes between figures 1(a), (b) and figures 2(a),
(c). Under the available conditions, we were only able to slice the highest parts with relatively
uniform gray levels, while the lower parts of figures 1(a), (b) were treated as agglomerations
on different planes. On the other hand, the dimensions of the pictures were adjusted slightly
to fit the needs of analysis. The agglomeration in figure 2(b) is made up of 358 pixels and
1107 edges, while that in figure 2(d) has 896 pixels and 3208 edges. The resulting networks
of pixels are presented in figure 2. The number of nodes in these two networks is equal to
the number of pixels they have. In what follows these two networks will be the main research
objects of this paper.

3.1. Degree distribution

The degree (or connectivity) ki of a node i is the number of edges incident with the node, and
is defined in terms of the adjacency matrix A as

ki =
∑
jεn

aij , (1)

where n ≡ n1, n2, . . . , nN are the nodes of the graph. The degree distribution P(k) is one of
the most important and basic statistical characteristics of a network. By definition, the degree
distribution P(k) is the probability that a randomly selected node has exactly k edges.

Unlike the small-world [1] and scale-free networks [2], the degree distribution in our
agglomeration networks is variable (see figure 3). These results indicate that the probability at
which k pixels link a certain pixel does not follow a ‘rich-gets-richer’ principle. By contrast,
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(a) (b)

(c) (d)

Figure 2. (a) A piece of surface slice of figures 1(a) and (b) its network in the mode of kamada-kawa
energy, (c) a piece of surface slice of figures 1(b) and (d) its network in the mode of kamada-kawa
energy.
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Figure 3. Degree distribution P(k) versus k for (a) the high-concentration agglomeration network
and (b) the low-concentration network.

certain pixels tend to have eight neighbors in the two different agglomeration networks as
limited by the Euclidean space.

Under fixed temperature and pressure, for a given quantity of liquid, the surface work
∂W ′ needed to extend a surface is directly proportional to the surface area change dA. If σ

stands for the constant of proportionality, one has

∂W ′ = −σdA. (2)

If the surface extending process is reversible, ∂W ′ = −dGT,p, where GT,p is the Gibbs free
energy under fixed temperature and pressure. Equation (2) can be also presented as

dGT,p = σdA, (3)

or

σ =
(

∂G

∂A

)
T ,p

. (4)
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Figure 4. Clustering coefficient C(k) versus the node degree k for (a) the low-concentration
agglomeration network (b) the high-concentration network.

For decreasing system energy and on approaching a steady state, agglomerations tend to a
more compact state in order to reduce surface area, that is, to reduce the exposed perimeter of
whole agglomerates when the number of particles is fixed. Hence, the agglomerations at high
concentration have more nodes with a larger degree than those at low concentration.

3.2. Clustering coefficient

The clustering coefficient provides a measure of the level of cohesiveness around any given
node. A quantity Ci (the local clustering coefficient of node i) is first introduced, expressing
how likely ajm = 1 for two neighbors j and m of node i. By definition, the clustering
coefficient Ci [4] of node i is the ratio between the number of edges Ei which actually exist
among the ki neighbors of node i and its maximum possible value, ki(ki − 1)/2, i.e.,

Ci = 2Ei/ki(ki − 1). (5)

The average clustering coefficient 〈C〉 of the whole network is the average of all individual
Ci’s,

〈C〉 = 1

N

∑
iεn

Ci. (6)

Here we compute exactly the clustering coefficient for every node and the average value for
the network. Through calculation we find that the average value of Ci is 0.4459 in the low-
concentration agglomeration and 0.4118 in the high one. Meanwhile, the relation between Ci

and k is shown in figure 4. Low-concentration agglomerations with fewer nodes have a larger
clustering coefficients. The result indicates that spatial factors strongly limit the aggregating
process.

3.3. Self-similarity

Enlightened by Song and Havlin’s seminal work [37, 38], we adopt the maximum-excluded-
mass-burning algorithm (MEMB) [39] to estimate the topological fractal dimension of these
networks and choose vertices which have the largest degree as hubs. There are three reasons:
firstly, there must exist a path inside a box that connects two nodes belonging to this box;
secondly, it is by far the easiest to implement; thirdly, the hubs exist in our networks. The
boxes contain nodes separated by a distance lB , which is measured as the length of the shortest
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Figure 5. Illustration of boxes of path (or border) lengths lB = 3, 5, 7 for use in the MEMB
algorithm.
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Figure 6. Logarithmic plot of the border length lB and the number of boxes NB at (a) low
concentration, and (b) high concentration, respectively.

path between nodes. Each box is subsequently replaced by a node, and the process is repeated
until the whole network shrinks to a single node. The relation between lB and the size of
the boxes is shown in figure 5. For each value of the box size lB , we search for the number
of boxes needed to tile the entire network such that each box contains nodes separated by a
distance l < lB .

Then, to estimate the topological fractal dimension, dB , we fit the number of required
boxes NB(dB) to the expression

NB(lB)

N
≈ l

−dB

B , (7)

which we accept as defining dB . From figure 6, we can obtain the results dB = 1.10 ± 0.04 for
low concentration and dB = 1.23 ± 0.04 for high concentration. That is to say, self-similarity
does exist in the present agglomeration networks. The MEMB algorithm provides a powerful
tool for further investigations of network properties, because it enables a renormalization
procedure, revealing the topological self-similarity of agglomerations. The self-similarity
of one agglomeration is not only a parameter to depict the robustness against intentional or
random attack but also a way to differentiate the sort of specimen structure containing the
same ingredient. Hence, it provides a new way to describe various material structures.
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3.4. Average path length

The shortest paths play an important role in the transport and communication within a network.
Suppose one needs to make a call to a friend through the telephone net: the geodesic provides
an optimal path, since one would achieve a fast transfer and save system resources. For such
a reason, the shortest paths have also played an important role in the characterization of the
internal structure of a graph.

The path length of a pair of vertices is defined as the shortest distance (the length of the
shortest path) between them, which characterizes the communication delay in the network
[40]. A measure of the typical separation between two nodes in the graph is given by the
average path length (APL), also known as the characteristic path length, defined as the mean
of geodesic lengths over all pairs of nodes,

D = 1

N(N − 1)

∑
i,jεn,i �=j

dij . (8)

We find that the APL in our low-concentration network is 14.0 and 16.6 in the high-
concentration network. Although the high-concentration network has many more nodes
than the low one, the average path lengths of these two networks are close. This phenomenon
demonstrates that particles prefer to be organized in a compact aggregating way to construct
a stable structure rather than to grow with a particular topological structure.

Summarizing the degree distribution, clustering coefficient and average path length, we see
that these agglomeration networks are neither scale-free networks nor small-world networks.
These features indicate that particles cannot be organized like social relations and or the
internet; rather, they are restricted by space and coordination number. However, the relation
between each particle is not as simple as our description. Hence, our data call for more
complex and searching definitions to describe these unknown and unexplored connections in
the future.

3.5. Degree correlations

The degree distribution completely determines the statistical properties of uncorrelated
networks. However, as we shall see, a large number of real networks are correlated in
the sense that the probability that a node of degree k is connected to another node of degree,
say k′, depends on k.

Degree correlation has been a subject of particular interest, because it can give rise to some
interesting network structure effects. An interesting quantity related to degree correlations
is the average degree of the nearest neighbors for vertices with degree k, denoted by knn(k)

[41, 42], namely,

knn =
∑
k′

k′P(k′|k). (9)

When knn(k) increases with k, it means that vertices have a tendency to connect to vertices
with a similar or larger degree. In this case the network is defined as assortative [43, 44]. In
contrast, if knn(k) decreases with k, which implies that vertices of large degree are likely to
have near neighbors with a small degree, then the network is said to be disassortative [45]. If
correlations are absent, knn(k) = const.

As shown in figure 7 (with 5% error bars), knn(k) is approximately a linear function of k
with a positive slope in the ranges of [2, 4] and [5, 8], which demonstrates that the networks
are assortative.
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Figure 7. Assortative behavior is shown via the average nearest neighbor degree for (a) the
low-concentration network and (b) the high-concentration network, respectively.

To confirm the assortativity, we describe degree correlations by a Pearson correlation
coefficient r of the degrees at the ends of a link. It is defined as [43, 44, 46, 47]

r = 〈k〉〈k2knn(k)〉 − 〈k2〉2

〈k〉〈k3〉 − 〈k2〉2
. (10)

If the network is uncorrelated, the correlation coefficient vanishes. Disassortative networks
have r < 0, while assortative graphs have a value of r > 0. We obtain r = 0.45, 0.49
for the low- and high-concentration networks, respectively, which testify to the assortativity
of our two agglomeration networks. The assortativity implies that the nodes with a high
degree prefer aggregating with their likes to attaching to ones of smaller degree for the sake
of reducing the system energy as mentioned in section 3.1. Compared with disassortative
networks, the exposed perimeter of assortative networks is smaller and the surface energy is
also lower. Hence the assortativity in our networks is agrees with the results acquired in degree
distribution.

3.6. Synchronizability

As mentioned in the preceding section, the definition of degree is the number of a pixel’s
neighbors. This definition is motivated by research on Raman optical activity enhancement
[48]. When three bridging oxygen species act as the nearest neighbors of four bridging oxygen
species, electronic coupling emerges between them. Hence we choose the nearest pixels as the
neighbors connected with each pixel. In this section, we treat vertices as coupled oscillators
on networks. At each node of a network is located an oscillator; a link connecting two nodes
represents coupling between the two oscillators. A set of equations of motion governing the
dynamics of the N coupled oscillators is

ẋi = F(xi) + σ

N∑
j=1

GijWij , (11)

where ẋi = F(xi) governs the dynamics of the individual oscillator, while σ is the coupling
strength, where

F(xi) =
ki∑

j=1

−→
Fij . (12)

In this expression one has

Fij = ∂Eij

∂rij

. (13)
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Figure 8. Raman spectra of two agglomerations.

Here, Eij is total vibrational energy between node i and node j, rij stands for average bond
length of interactional atoms between pixels i and j. Briefly, we only take the bond stretching
energy shift Ek into consideration [49]:

Eij =
∑

k

Ek =
∑

k

De

{
1 − exp

[ − a
(
bk − bk0

)]}2
, (14)

where De is the minimum of potential energy of atom pair k, a = ω
√

µ/2De in which ω is
the vibration frequency of the chemical bond in atom pair k. µ is the reduced mass, while
ω = √

S/µ (S stands for the bond constant). In equation (10), bk0 is the referenced bond length
of an atom pair k (one atom of this atom pair belongs to pixel i and the other one belongs to
pixel j ) and bk is the real bond length. k is the number of interactional atoms between pixel i
and j :

Wij = Eij (ω
′) − Eij (ω

0), (15)

where ω′ is the increased vibration frequency caused by laser energy absorbed and ω0 is original
vibration frequency, respectively. Wij is total vibrational energy shift of interactional atoms
between pixel i and j after laser activation. The N×N coupling matrix G is defined by Gii = ki

if the degree of node i is ki,Gij = −1 if nodes i and j are connected, and Gij = 0 otherwise.
The eigenratio γ (nonzero maximal eigenvalue to minimal eigenvalue) of the coupling matrix
G quantifies the synchronizability of the network [50, 51]. That is to say, the smaller γ is,
the better the synchronizability is, and vice versa. In this paper, we concentrate on how the
network topology affects the eigenratio γ . We acquire γlow = 11.4456/0.0097 = 1180 in an
agglomeration of 358 pixels and γhigh = 11.8682/0.0115 = 1032 in an agglomeration of
896 pixels, that is to say, the agglomeration in the high-concentration solution have
more oscillators but better synchronizability. Better synchronizability indicates that the
agglomeration is more homogeneous as regards topology. In other words, the system at
the high concentration is closer to a regular network.

In a word, the same indigenous materials formed under distinct conditions could turn
to different agglomerations with different synchronizability. The agglomerations which have
better synchronizability can absorb more photons at a certain wave number standing for
a certain kind of oscillation. At the same time, people could find higher absorbing peak
intensity. Hence, we conclude that difference of synchronizability is one of the common
reasons for the physical enhancement of Raman spectra in the aggregating processes. During
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the merging process, particles of agglomeration reform in a more compact way to reach a
stable state, meanwhile, because of compact arranging [52], the synchronizability of these
agglomerations becomes stronger and stronger. As a result, better synchronizability leads to
higher absorbing intensity. For the sake of validating our conclusion, we choose two compact
points with an approximately identical number of particles but different topology structures
surrounding to test their Raman scattering intensity (see figure 8). These two nodes exist
at the center of two agglomerations (one in low concentration and the other one in high
concentration). It is obvious that the pixel in high concentration has higher intensity, while
the one in low concentration absorbs less photons, which supports our conclusion.

4. Conclusion and discussion

Network science offers a different perspective on the topology of agglomerations. Our results
indicate that agglomeration networks exhibit many interesting topological properties: a given
pixel tends to have eight neighbors in two different agglomeration networks; low-concentration
agglomerations have a larger clustering coefficient; the average path length of these two
networks is close to each other; the networks are assortative in the domains; meanwhile the
Pearson coefficient is positive. Self-similarity exists in the present agglomeration networks.
The synchronizability of agglomerations gives us a new method to characterize material and
explain mechanisms of intensity enhancement in Raman spectra, that is, the structure with
better synchronizability could have higher intensity enhancement.

However, our networks are built based on the fact that a pixel stands for a node. Hence,
we have shrunk a large number of atoms existing in one pixel and supposed that these nodes
are closely arrayed in the pixel. This mapping indeed ignores some microcosmic information,
but it represents the information on the micron scale as a whole. Furthermore, the holistic
characters are just the key point of the Raman scattering intensity ignored by researchers.
Further research should enable us to discuss interactions in agglomeration networks in greater
detail.
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